If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1600-16t^2=0
a = -16; b = 0; c = +1600;
Δ = b2-4ac
Δ = 02-4·(-16)·1600
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{102400}=320$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-320}{2*-16}=\frac{-320}{-32} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+320}{2*-16}=\frac{320}{-32} =-10 $
| 3k/4=(k-14)/6 | | 32(x+10)+29(3x-15)=945 | | 3k/4=(k/6)-14 | | 32(x+10)+29x3(x-5)=945 | | 13x2+56x+75=4x2-10x-46 | | 2(u+8)-5u=37 | | 5/9h=h+4 | | 3(3z+4)=12-z | | 5/9h-4=h | | 2(3x-7)=10x+4 | | (4k+5)/5=(4-k)/4 | | (4k+5)/5=(4-k/)4 | | 5-x/2=4-3x-1/3 | | 0=x+5-30x^-2 | | H^2-28=-3h | | 7x(+7)=49 | | 1/2y-2=1/7y | | W^2+12w=-36 | | 6(x+5)+3=-6(x-4)-2 | | 1/2(x=4)=1/3(3x-6) | | 4+2(3x+4)=19 | | 9=2+v | | 4(x–1)+x–1=0 | | 13x+23=16x-16 | | 6r+2(2-r)=4(2r-1) | | 14x-32=80 | | 26+(5x+11)=x | | (2w+5)(w)=250 | | 10x=3x•5 | | 2a+15+4a=75 | | ∛(x+1)+∛(x-1)=∛5x | | Q=100-1.25p |